首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   60篇
  国内免费   3篇
  2023年   2篇
  2021年   13篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   14篇
  2015年   34篇
  2014年   30篇
  2013年   37篇
  2012年   47篇
  2011年   40篇
  2010年   25篇
  2009年   17篇
  2008年   25篇
  2007年   29篇
  2006年   25篇
  2005年   26篇
  2004年   35篇
  2003年   21篇
  2002年   28篇
  2001年   13篇
  2000年   15篇
  1999年   16篇
  1998年   5篇
  1997年   5篇
  1996年   8篇
  1995年   1篇
  1994年   6篇
  1993年   10篇
  1992年   14篇
  1991年   4篇
  1990年   13篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有649条查询结果,搜索用时 156 毫秒
61.
Endothelin-1 (ET-1) has been found to increase cardiac -myosin heavy chain (-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced -MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced -MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and -MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and -MyHC gene expression. ET-1 increased 3H-leucine incorporation and -MyHC promoter activities, which were blocked by the specific ETA receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, -MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and -MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced -MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the -MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced -MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and -MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and -MyHC expression. Tzu-Hurng Cheng, Neng-Lang Shih: These authors have equally contributed to this work  相似文献   
62.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   
63.
64.
Aging is believed to be a nonadaptive process that escapes the force of natural selection. Here, we challenge this dogma by showing that yeast laboratory strains and strains isolated from grapes undergo an age- and pH-dependent death with features of mammalian programmed cell death (apoptosis). After 90-99% of the population dies, a small mutant subpopulation uses the nutrients released by dead cells to grow. This adaptive regrowth is inversely correlated with protection against superoxide toxicity and life span and is associated with elevated age-dependent release of nutrients and increased mutation frequency. Computational simulations confirm that premature aging together with a relatively high mutation frequency can result in a major advantage in adaptation to changing environments. These results suggest that under conditions that model natural environments, yeast organisms undergo an altruistic and premature aging and death program, mediated in part by superoxide. The role of similar pathways in the regulation of longevity in organisms ranging from yeast to mice raises the possibility that mammals may also undergo programmed aging.  相似文献   
65.
66.
Yeh SD  Liou SR  True JR 《Heredity》2006,96(5):383-395
Many sex-specific traits involved in mating consist of functionally coordinated morphologies and behaviors. How the components of these complex traits evolve and become coordinated during evolution is unknown. In order to understand how such trait complexes evolve and diversify, we must decipher the genetic underpinnings of their components. In this study, we begin to elucidate the genetic architecture underlying differences in functionally related male pigmentation and behavior between two Asian Drosophila melanogaster group species, D. elegans and D. gunungcola. D. elegans possesses a male-specific wing melanin spot and a stereotypical wing display element in male courtship, whereas D. gunungcola lacks both of these traits. Using reciprocal F1 male hybrids, we demonstrate that the X-chromosome contains a major locus or loci required for wing spot formation and that autosomal loci largely determine the male courtship display. Using phenotypic and genetic analysis of backcross progeny, we further demonstrate that both the wing spot and courtship differences between the two species are polygenic and both depend at least in small part on genetic factors on both the X and the autosomes. Finally, we find that male wing spot size and courtship wing display are highly correlated in backcross progeny, suggesting that linkage or pleiotropy may have been involved in their coordinated evolution.  相似文献   
67.
68.
15-Lipoxygenase (15-LOX) is involved in many pathological processes. The aim of this study is to examine the role of 15-LOX in the matrix metalloproteinase (MMP) expression and inflammatory arthritis. It was found that treatment of 15-LOX downstream product of 15-(S)-HETE (15-S-hydroxyeicosatetraenoic acid) increased the mRNA and protein levels of MMP-2 in rheumatoid arthritis synovial fibroblast (RASF) derived from rheumatoid arthritis patients. The enhancement effect of 15-(S)-HETE was antagonized by the addition of LY294002 (PI3K inhibitor) and PDTC (NF-κB inhibitor). Treatment of 15-(S)-HETE increased the phosphorylation of AKT, nuclear translocation of p65 and the breakdown of IκBα. TNF-α and IL-1β are the key cytokines involved in arthritis and also increase the activity of MMP-2 in RASF, which was antagonized by pretreatment with 15-LOX inhibitor PD146176 or knockdown of 15-LOX. It was also found that these two cytokines increased the expression of 15-LOX in RASF. Treatment of glucocorticoid but not NSAIDs inhibited 15-(S)-HETE-induced expression of MMP-2. In comparison with wild-type mice, adjuvant-induced arthritis and MMP-2 expression in synovial membrane were markedly inhibited in 15-LOX knockout (KO) mice. These results indicate that 15-LOX plays an important role in the disease progression of arthritis and may be involved in the inflammatory action induced by TNF-α and IL-1β. 15-LOX is thus a good target for developing drugs in the treatment of inflammatory arthritis.  相似文献   
69.
Tsai MS  Yang YL  Wang AH  Wang LS  Lu DC  Liou CH  Hsieh LY  Wu CJ  Cheng MF  Shi ZY  Lo HJ 《Mycopathologia》2012,174(2):121-130
A total of 35 Trichosporon isolates were collected from the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) project from 1999 to 2006, and their identifications as well as drug susceptibilities were determined. The most frequently isolated species was T. asahii (62.9%), and the most common clinical sample that yielded Trichosporon isolates was urine (37.1%). The etiology of all seven invasive trichosporonosis was T. asahii. For the 22 T. asahii isolates, the MIC(50) and MIC(90) for amphotericin B were 0.25 and 1 μg/mL, respectively. Those for fluconazole were 2 and 4 μg/mL, respectively, and for voriconazole 0.031 and 0.063 μg/mL, respectively. When the intraclass correlation coefficients (ICCs) and agreements were calculated, we found that the MICs of fluconazole obtained from different methods were similar and the inter-method discrepancies were low. Nevertheless, no unanimous MIC of amphotericin B and voriconazole was obtained among different methods.  相似文献   
70.
Xenobiotic metabolism has been proposed to play a role in modulating the rate of aging. Xenobiotic metabolizing enzymes (XME) are expressed at higher levels in calorically restricted mice (CR) and in GH/IGF-I-deficient, long-lived mutant mice. In this study, we show that many phase I XME genes are similarly upregulated in additional long-lived mouse models, including "crowded litter" (CL) mice, whose lifespan has been increased by food restriction limited to the first 3 wk of life, and in mice treated with rapamycin. Induction in the CL mice lasts at least through 22 mo of age, but induction by rapamycin is transient for many of the mRNAs. Cytochrome P-450s, flavin monooxygenases, hydroxyacid oxidase, and metallothioneins were found to be significantly elevated in similar proportions in each of the models of delayed aging tested, whether these were based on mutation, diet, drug treatment, or transient early intervention. The same pattern of mRNA elevation could be induced by 2 wk of treatment with tert-butylhydroquinone, an oxidative toxin known to activate Nrf2-dependent target genes. These results suggest that elevation of phase I XMEs is a hallmark of long-lived mice and may facilitate screens for agents worth testing in intervention-based lifespan studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号